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Abstract
Carathéodory stated the conditions to be obeyed by n complex numbers
c1, . . . , cn in order that they can be written uniquely in the form cp =∑m

j=1 ρjεj
p with p = 1, . . . , n, εj s being different unimodular complex

numbers and ρj s strictly positive numbers. We give the conditions to be
obeyed for the former property to hold true if ρj s are simply required to be real
and different from zero. The number of the possible choices of the signs of ρj s
are at most equal to the number of the distinct eigenvalues of the Hermitian
Toeplitz matrix whose (i, j) th entry is cj−i , where c−p by definition is the
complex conjugate of cp and c0 = 0. This generalization is relevant to neutron
scattering. Its proof is made possible by a lemma stating the necessary and
sufficient conditions to be obeyed by the coefficients of a polynomial equation
for all the roots to lie on the unit circle. This lemma is an interesting side result
of our analysis.

PACS numbers: 61.12.Bt, 02.30.Zz, 89.70.+c, 02.10.Yn, 02.50.Ga

1. Introduction

Carathéodory’s theorem [1] states that

Carathéodory’s theorem. n (� 1) complex number c1, . . . , cn and their complex conjugates,
respectively denoted by c−1, . . . , c−n, can always and uniquely be written as

cp =
m∑

j=1

ρjεj
p, p = 0,±1, . . . ,±n, (1)
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with ρj ∈ R, ρj > 0, εj ∈ C, |εj | = 1, εj �= εk(j �= k = 1, . . . , m), and m and c0 uniquely
determined by cj s with j �= 0.

This theorem is very useful for the inverse scattering problem [2] as well as for the
information theory [3, 4]. In the first case, this appears evident from the following remark.
Writing εj s as ei2πxj with 0 � xj < 1, cps take the form

∑m
j=1 ρj ei2πxj p so as they can

be interpreted as the scattering amplitudes associated with the ‘scattering vector’ values
p = 0,±1, . . . ,±n and generated by m point scatterers with ‘charges’ ρ1, . . . , ρm respectively
located at x1, . . . , xm. One concludes that the theorem of Carathéodory allows us to determine
the number of the scattering centres as well as their positions and charges from the knowledge
of scattering amplitudes c1, . . . , cn. Further, it ensures that the solution of this inverse problem
is unique. However, in the case of neutron scattering [5], the charges of the scattering centres
no longer have the same sign. Nonetheless, we have recently shown [6] that the so-called
algebraic approach to solving the structure of an ideal crystal from its x-ray diffraction
pattern [2] can also be applied to the case of neutron scattering. This result suggests that
Carathéodory’s theorem can be generalized so as to avoid the requirement that the sign of
all the scattering charges be positive. This paper shows how to obtain this generalization
according to the following plan. In the first of the three subsections of section 2, we review
the proof of Carathéodory’s theorem given by Grenander and Szegö [7]. In the second, we
argue how this proof can be generalized to the case where charges ρj s are no longer required
to be positive and we state the generalized version of Carathéodory’s theorem. In the third
subsection, we report some numerical illustrations that also consider the case of non-diagonal
charges recently considered by Ellys and Lay [8]. The results are so far presented for a
practical minded reader. They are rigorously proved in section 3, while section 4 draws our
final conclusions. The proof given in section 3 uses a lemma that states the conditions for all
the roots of a polynomial equation to have unit modulus. We emphasize that these conditions
are necessary and sufficient and only involve the coefficients of the considered polynomial
equation in contradiction to presently known theorems [9, 10]. The proof of the lemma is
given in appendix A. Appendices B and C are devoted to the derivation of other ancillary
results.

2. Carathéodory’s theorem and its generalization

In this section, we first review the proof of Carathéodory’s theorem given by Grenander and
Szegö [7]. Then, we show how this proof can be adapted to the case where the charges are no
longer required to be positive. By this adaptation, the given cj s must obey further requirements
that once specified lead to the generalized version of Carathéodory’s theorem. In the third
subsection, we numerically illustrate the above results.

2.1. Grenander and Szegö’s proof

This proof of Carathéodory’s theorem is based on an enlargement of the set of the n given
complex numbers c1, . . . , cn to a set containing (2n + 1) complex numbers, still denoted as cp

with −n � p � n. Here, each c−p with negative index is defined as the complex conjugate
of the corresponding cp, i.e. c−p ≡ cp with p = 1, . . . , n. (Hereafter an overbar will always
denote the complex conjugate.). The remaining value c0, real by assumption, is determined as
follows. Consider the (n + 1) × (n + 1) matrix (C) defined as

(C)r,s ≡ Cr,s = cs−r , r, s = 1, . . . , (n + 1). (2)
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This matrix is a Hermitian Toeplitz matrix [11] and its diagonal elements are equal to c0. This
value is chosen in such a way to ensure that matrix (C) is singular (i.e. det(C) = 0) and the
associated bilinear Hermitian form

u†(C)u ≡
n+1∑

r,s=1

urCr,sus (3)

is non-negative definite. (In equation (3) u is an (n + 1)-dimensional complex vector.) To
show that c0 is unique one proceeds as follows [3]. Let (Ĉ) denote the (n + 1)× (n + 1) matrix
that has its non-diagonal elements equal to the correspondent elements of (C) and its diagonal
ones equal to zero, i.e., with r, s = 1, . . . , (n + 1),

Ĉr,s ≡
{

cs−r , if r �= s,

0, if r = s.
(4)

This matrix is Hermitian. Then its eigenvalues (χj , j = 1, . . . , n + 1) are real and can be
labelled so as to have χ1 � · · · � χ

n+1 . Further, they are such that
∑n+1

j=1 χ
j

= 0 because the

trace of (Ĉ) is zero. Hence, χ1 < 0 and χ
n+1 > 0. One immediately realizes that matrix (C)

is obtained by setting c0 = −χ1 > 0 so that (C) = (Ĉ) − χ1(I ), (I ) being the unit matrix. In
fact, the matrix (Ĉ − χ1I ) is a Hermitian Toeplitz matrix with its diagonal elements equal to
(−χ1). The secular equation of this matrix is

det((C) − z(I )) = det((Ĉ) − χ1(I ) − z(I )) = det((Ĉ) − (χ1 + z)(I )) = 0.

This equation is the same equation that determines the eigenvalues of (Ĉ) if, instead
of variable z, we use the shifted variable z + χ1 . Thus, the eigenvalues of (C) are
0 = (χ1 −χ1) � (χ2 −χ1) � · · · � (χ

n+1 −χ1) and matrix (C) is non-negative definite. (C) is
uniquely determined by c1, . . . , cn because the remaining quantity c0 depends on c1, . . . , cn.
Further, let µ1 (� 1) denote the multiplicity of eigenvalue χ1 of (Ĉ), then the rank of (C)

is (n + 1 − µ1) and this value gives the number of the addends present in equation (1), i.e.
m = (n + 1 − µ1). Exploiting the non-negative definiteness and the singularity of (C),
Grenander and Szegö showed that (I) the (2n + 1) equalities stated in (1) are satisfied; (II) the
m complex numbers εj present in (1) are the roots of the following polynomial equation of
degree m:

Pm(z) = Dm
−1 det




c0 c1 · · · c
m−1 c

m

c−1 c0 · · · c
m−2 c

m−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

c−m+1 c−m+2 · · · c0 c1

1 z · · · zm−1 zm


 = 0, (5)

where Dm denotes the determinant of the left principal minor contained in the first m rows
of (C) (clearly Dm > 0 because (C) is non-negative definite); (III) the roots are distinct and
unimodular and (IV) ρj s are strictly positive and given by

ρj = 1

Pm
′(εj )

m−1∑
p=0

βj,pcp, (6)

where the prime denotes the derivative and βj,ps are the coefficients of the following
polynomial:

Pm(z)/(z − εj ) ≡
m−1∑
p=0

βj,pzp. (7)
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The important role played by equation (5) appears evident from (II)–(IV). For this reason,
equation (5) will be called resolvent equation in the following.

The above procedure shows that it is always possible to associate a singular, unique, non-
negative definite, Hermitian, Toeplitz matrix (C) of order (n + 1) to n (� 1) given complex
numbers c1, . . . , cn because these uniquely determine c0. Denoting the rank of (C) by m,
according to Carathéodory’s theorem, all the elements of (C) can be written as specified in
(1). After introducing the m × (n + 1) Vandermonde (V) matrix

Vi,j ≡ ε
j−1
i , |εj | = 1, i = 1, . . . , m, j = 1, . . . , (n + 1), (8)

and the m × m positive-definite diagonal matrix (Q)

Qi,j ≡ ρiδi,j , i, j = 1, . . . , m, (9)

from equations (2) and (1) follows that

Cr,s = cs−r =
m∑

i=1

ρiεi
s−r =

m∑
i,j=1

εi
−r+1ρiδi,j εj

s−1

=
m∑

i,j=1

εi
r−1ρiδi,j εj

s−1 =
m∑

i,j=1

Vi,rQi,jVj,s . (10)

Hence, (C) can be written as

(C) = (V)†(Q)(V), (11)

where (V)† denotes the matrix Hermitian conjugate of (V). This remark leads to the following:

Corollary of Carathéodory’s theorem. A non-negative definite, Hermitian Toeplitz matrix
(C) of order n + 1 and rank m (� n) uniquely factorizes as in (11) in terms of matrices (V)

and (Q), defined by (8) and (9).

2.2. Formulation of the generalized Carathéodory theorem

We already stressed that, starting from n given complex numbers c1, . . . , cn, the above choice
of c0 is the only one that yields a singular, non-negative definite, Hermitian Toeplitz matrix
(C) of order n + 1. It is evident that, if we choose c0 = −χ

n+1 , the resulting matrix defined by
equations (2) (for the moment denoted as (Cn+1)) is singular and non-positive definite, while
−(Cn+1) is singular and non-negative definite. Then, to the latter we can apply Grenander and
Szegö’s analysis and conclude

c0 = −χn+1 =
m∑

j=1

ρ ′
j and cp =

m∑
j=1

ρ ′
j ε

′
j
p
, p = ±1, . . . ,±n

where ρ ′
j s are now strictly negative numbers, m = (n + 1 − µ

n+1) with µ
n+1 equal to the

multiplicity of χ
n+1 , and ε′

j s distinct unimodular complex numbers equal to the roots of
the resolvent equation generated by −(Cn+1). Of course, this result represents only a trivial
generalization of Carathéodory’s theorem. However, further choices of c0 are still possible and
the following considerations will show that some of these lead to a non-trivial generalization of
Carathéodory’s theorem. First, it is convenient to determine all the distinct Toeplitz matrices
that can be obtained from (2) by choosing c0 equal to the opposite of each eigenvalue of matrix
(Ĉ). To this aim, we shall denote the distinct eigenvalues of (Ĉ) by χ̂1 < · · · < χ̂

ν
, their

multiplicities by µ1, µ2, . . . , µν , and the number of the positive (negative) χ̂ls by pχ̂ (nχ̂ ).
We clearly have

∑ν
j=1 µj = (n + 1), and ν = (nχ̂ + pχ̂ + 1) or ν = (nχ̂ + pχ̂ ) depending on
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whether one of χ̂ls is equal to zero or not. Consider now the ν matrices (Cl) of order (n + 1)

defined, for l = 1, . . . , ν, as

(Cl)r,s ≡ Cl;r,s ≡
{

cs−r , if r �= s and r, s = 1, . . . , n + 1,

cl,0 = −χ̂l, if r = s = 1, . . . , n + 1.
(12)

The eigenvalues of matrix (Cl) are (χ1 − χ̂l), . . . , (χn+1 − χ̂l). Thus, (Cl) respectively has

µl (� 1), Nl,− ≡
l−1∑
i=1

µi and Nl,+ ≡
ν∑

i=l+1

µi (13)

null, negative and positive eigenvalues. Its rank is

ml = (n + 1 − µl) = Nl,+ + Nl,−. (14)

All the matrices defined by (12) are distinct, because they differ for the diagonal elements.
Since cl,0s and c−1, . . . , c−n are uniquely determined by c1, . . . , cn, we have the important

Property A. The ν matrices defined by (12) are the only distinct, singular, Hermitian, Toeplitz
matrices of order (n + 1) that are generated by the n complex numbers c1, . . . , cn.

We always have ν � 2 because the trace of (Ĉ) is zero. Since matrices (C1) and
(Cν) respectively are non-positive and non-negative defined, the sought for generalization of
Carathéodory’s theorem only concerns (Cl)s defined by (12) with 1 < l < ν. These matrices
exist only if ν > 2. Assuming this condition fulfilled, in the following we shall mainly refer
to the last matrices omitting, whenever possible, index l for notational simplicity.

We face now the question: what are the conditions that must be obeyed by each of these
matrices for the relevant complex numbers cl,0, c±1, . . . , c±n to be written in the form (1)
relaxing the requirement that all the involved ρj s are strictly positive?

The situation looks similar to that found in the case of Carathéodory’s theorem and one
might conclude that for each of the ν matrices defined by (12) the resolvent equation can be
obtained from equation (5) using there the considered (Cl) matrix. Unfortunately, this matrix
is neither non-negative nor non-positive definite so that the condition Dml

�= 0 is not ensured
by the property that (Cl) has rank m. For this to happen one must require that the determinant
of the minor of (Cl), formed by the first m rows and m columns of (Cl), be different from zero.
This is the first constraint that must be obeyed by the considered (Cl). It can be formalized as

Constraint (i). Each matrix (Cl) defined by (12) must be such that its rank ml coincides with
its principal rank.

We define principal rank of a general matrix (A) as the highest of the rank values of all
the possible strictly principal (left) minors of (A). Moreover, a strictly principal (left) minor
(of order m) of (A) is a minor formed by m subsequent rows and m subsequent columns of
(A), the rows and the column having the same index values, e.g. p + 1, p + 2, . . . , p + m with
0 � p � (n − m) and n equal to the order of (A).

Once the considered (Cl) obeys constraint (i), the existence of the polynomial Pml
(z) is

ensured. But the polynomial is generated now by a matrix that is indefinite so that Grenander
and Szegö’s procedure cannot be used to conclude that the roots of the corresponding equation
Pml

(z) = 0 are unimodular and distinct. Thus, we must require that the coefficients of this
polynomial equation obey a set of constraints in order that these properties of the roots are
satisfied.
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The constraints are specified by lemma A that will be reported after some preliminary
definitions. First, we observe that a polynomial equation of degree N can generally be written as

PN(z) ≡
N∏

j=1

(z − εj ) =
N∑

n=0

anz
n = 0, (15)

its coefficients an being related to the roots εj as

an ≡ (−)N−n
∑

1�j1<j2<···<jN−n�N

εj1εj2 · · · εjN−n
, n = 0, 1, . . . , N − 1 (16)

and aN = 1. The following symmetric functions of the roots [12, 13]

σp ≡
N∑

j=1

εj
p, p = 0, 1, . . . (17)

can be expressed in terms of ans by solving the following equations:

σ0 = N

aNσ1 = −aN−1

aNσ2 +aN−1σ1 = −2aN−2

aNσ3 +aN−1σ2 +aN−2σ1 = −3aN−3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = ...

aNσN−1+ · · · +a4σ3 +a3σ2 +a2σ1 = −(N − 1)a1

aNσp+N+ · · · +a2σp+2 +a1σp+1 +a0σp = 0, p = 0, 1, . . . .

(18)

For negative ps, we set

σ−p ≡ σp, p = 1, . . . , N, (19)

and we introduce the (N + 1) × (N + 1) Hermitian Toeplitz matrix (S) defined as

Si,j ≡ σj−i , i, j = 1, . . . , N + 1. (20)

The lemma that specifies the constraints on the coefficients of polynomial equation (15) for
this to have distinct and unimodular roots is the following:

Lemma A. A polynomial equation of degree N (see equation (15)) has distinct and unimodular
roots if and only if (a) its coefficients obey the conditions

a0 �= 0 and am = aN−m/a0 f or m = 0, . . . , N, (21)

and (b) Toeplitz matrix (S), defined by (20), is non-negative definite and has rank N.

The lemma will be proved in appendix A. We can now state the

Generalized Carathéodory theorem. Let (Cl) be one of the matrices defined by (12). If
(Cl) is such that (i) its rank ml coincides with its principal rank and (ii) the coefficients of the
associated resolvent equation Pml

(z) = 0 obey conditions (a) and (b) reported in lemma A,
then the complex numbers cl,0, c±1, . . . , c±n that define (Cl) can be written in the form

Cl;r,r ≡ cl,0 =
m∑

j=1

ρl,j , Cl;r,s ≡ cs−r = c±p =
m∑

j=1

ρl,j ε
±p

l,j , p = 1, . . . , n (22)

ρj ∈ R, ρj �= 0, εj ∈ C, |εj | = 1,

εj �= εi if j �= i, j, i = 1, . . . , m,
(23)

with m = ml,Nl,+ positive ρl,j s and Nl,− negative ρl,j s ml being defined by (14) and Nl,+ and
Nl,− by (13).
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This generalized theorem, similarly to Carathéodory’s, leads to the following:

Corollary of the generalized Carathéodory theorem. A Hermitian Toeplitz matrix (C) of
order n + 1 and rank m � n uniquely factorizes as

(C) = (V)†(Q)(V), (24)

where (V) is defined by (8) and (Q) is an m×m diagonal matrix with Qj,j = ρj , iff (C) obeys
conditions (i) and (ii) reported in the above theorem.

2.3. Some numerical illustrations

Before proving these theorems, we report three numerical illustrations of the reported results
as follows:

(1) The first refers to a case where it is impossible to express a set of cj s in terms of positive and
negative ρj s. Let c1 = 0, c2 = 0, c3 = 1. The distinct eigenvalues of the associated matrix
(Ĉ) are −1, 0 and 1, with respective multiplicities 1, 2 and 1. The matrix (C1), obtained
by setting c1,0 = 1, is non-negative definite, has rank 3 and eigenvalues equal to 0, 1, 1, 2.
Equations (22) and(23) with l = 1 are fulfilled with ε1,1 = 1, ε1,2 = −eiπ/3, ε1,3 = ei2π/3

and ρ1,1 = ρ1,2 = ρ1,3 = 1/3. The matrix (C3), obtained by setting c3,0 = −1, is
non-positive definite with rank equal to 3 and eigenvalues equal to −2,−1,−1, 0. The
solutions are ε3,1 = −1, ε3,2 = eiπ/3, ε3,3 = −ei2π/3 and ρ3,1 = ρ3,2 = ρ3,3 = −1/3.
Finally, matrix (C2) is obtained by setting c2,0 = 0 and coincides with (Ĉ). It is non-
definite, has rank equal to 2 and principal rank equal to 0. Thus, condition (i) of the
generalized Carathéodory theorem is not satisfied and it is impossible to write the given
cps, namely 0, 0, 0 and 1 in the form (22), (23) with m = 2 as one can easily check.

(2) The second example considers the case where c1 = 1, c2 = 0, c3 = 1. The distinct
eigenvalues of the associated matrix (Ĉ) are −2, 0, 2 with respective multiplicities 1, 2, 1.
Setting c2,0 = 0, the resulting (C2) matrix coincides with (Ĉ). It is non-definite, its rank
is 2 and equals its principal rank value. The generalized Carathéodory’s theorem applies
because the resolvent equation is P2(z) = z2 − 1 = 0. The solution is ε2,1 = 1,
ε2,2 = −1, ρ2,1 = 1/2 and ρ2,2 = −1/2. With these values one easily checks that
c2,0 = ρ2,1 + ρ2,2 = 0, c1 = ρ2,1ε2,1 + ρ2,2ε2,2 = 1, c2 = ρ2,1ε2,1

2 + ρ2,2ε2,2
2 = 0 and

c3 = ρ2,1ε2,1
3 + ρ2,2ε2,2

3 = 1.
Setting c1,0 = 2, the resulting (C1) is non-negative definite with rank 3. The solution

is ε1,1 = 1, ε1,2 = i, ε1,3 = −i, ρ1,1 = 1, ρ1,2 = 1/2 and ρ1,3 = 1/2. The last choice
c3,0 = −2 defines a non-positive definite (C3) matrix with rank equal to 3 with solution
ε3,1 = −1, ε3,2 = i, ε3,3 = −i, ρ3,1 = −1, ρ3,2 = −1/2 and ρ3,3 = −1/2.

(3) The last example corresponds to having c0 = δ0, c1 = δ0 + iδ1eiϕ and c2 = (δ0 + 2iδ1)e2iϕ

with δ0, δ1 and ϕ real numbers. The eigenvalues are 0 and (3δ0/2)(1 ±
√

1 + 8δ2
1

/(
3δ2

0

)
).

Moreover, we assume that the values of δ0 and δ1 are such that the three eigenvalues
are distinct. Hermitian matrix (C) is indefinite. It has rank and principal rank equal to
2. The resolvent equation is P2(z) = z2 − 2eiϕz + e2iϕ = 0. Its coefficients a0 = e2iϕ ,
a1 = −2eiϕ and a2 = 1 obey conditions (21). From equations (18) and (19) follows that
σ0 = 2, σ1 = 2eiϕ and σ2 = 2e2iϕ so that resulting matrix (S) has rank 1 instead of 2.
(In fact, the reported equation has a unimodular root with multiplicity 2 since it can be
written as P(z) = (z − eiϕ)2 = 0.) Thus, condition (ii) of the generalized Carathéodory
theorem is violated and (C) cannot be written as (V)†(Q)(V).
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In this example, however, all the roots are unimodular. Then, according to theorem 3.4
of Ellis and Lay [8], (C) factorizes as

(C) = (V ′)†(
)(V ′) (25)

where (V ′) is a generalized confluent Vandermonde matrix generated by the distinct roots
of the resolvent equation and (
) is a block-diagonal matrix with reversed upper triangular
blocks. In fact, in our case, one finds that
 δ0, (δ0 + iδ1) eiϕ, (δ0 + 2iδ1) e2iϕ

(δ0 − iδ1) e−iϕ, δ0, (δ0 + iδ1) eiϕ

(δ0 − 2iδ1) e−2iϕ, (δ0 − iδ1) e−iϕ, δ0




=

 1, 0

e−iϕ, e−iϕ

e−2iϕ, 2e−2iϕ


 (

δ0, iδ1

−iδ1, 0

) (
1, eiϕ, e2iϕ

0, eiϕ, 2e2iϕ

)
. (26)

In proving factorization (25), Ellis and Lay required neither the hermiticity of Toeplitz matrix
(C) nor semidefiniteness of (C). This last property amounts to relaxing the condition that ρj s
present in (1) are strictly positive. However, in proving this more general factorization, Ellis
and Lay explicitly assumed that all the roots of the resolvent equation are unimodular without
stating the conditions for the unimodularity to occur. Hence, the more general factorization
(25) becomes fully proved if one adds lemma A to the considerations reported in [8]. We note
that generalization (25) does not appear to be physically relevant because it is not yet clear the
physical meaning of a ‘charge’ matrix (
) strictly non-diagonal.

3. Proof of the generalized Carathéodory theorem

We recall that this theorem states that the complex numbers cl,0, c±1, . . . , c±n that define (Cl),
one of the matrices defined by (12), can be written in the form (22) and (23) with m = ml,Nl,+

positive ρl,j s and Nl,− negative ρl,j s, if (Cl) is such that (i) its rank ml coincides with its
principal rank and (ii) the coefficients of the resolvent polynomial Pml

(z) = 0 obey conditions
(a) and (b) reported in lemma A.

As already emphasized, its proof must be achieved by a procedure different from
Grenander and Szegö’s because matrices (Cl), defined in (12), are indefinite if 1 < l < ν.
Our attention will now focus on one of these matrices and we shall omit index l for notational
simplicity.

3.1. Necessity of condition (i)

We first show the necessity of condition (i) assuming that the coefficients of (C) can be written
as in (22) and (23). In such a case, the m × (n + 1) rectangular Vandermonde matrix (V)

defined by (8) and the m × m diagonal matrix (Q) defined by (9) exist, equation (10) applies
and the considered (C) can be written as in (11). Consider now the p×p minor of (C) formed
by the rows r1 < · · · < rp and the columns s1 < · · · < sp. By Bezout’s theorem [14, 15] one
finds that

det
(
C

s1 ,...,sp

r1,...,rp

) =
∑

1�i1<i2<···<ip�m


 p∏

j=1

ρij


 det

(
V

s1 ,...,sp

i1,...,ip

)
det

(
V

r1 ,...,rp

i1,...,ip

)
(27)

where, adopting Gantmacher’s notation [14], the lower and upper indices inside each
determinant symbol denote the rows and the columns of the considered minors of (C), (V)
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and (V). This expression makes it clear that the determinant of any minor of (C) of order
p > m is equal to zero because the order of (Q) is m.4 For this reason, the rank of (C) cannot
exceed m, i.e. the number of the different εj s. At the same time, if p = m, the determinant of
each (m × m) strictly principal minor

(
C q+1,...,q+m

q+1,...,q+m

)
of (C), with 0 � q � n + 1 − p, is


 m∏

j=1

ρj




∣∣∣∣∣∣
∏

1�i�j�m

(εj − εi)

∣∣∣∣∣∣
2

. (28)

In fact, if p = m, the sum present in (27) involves a single term and, due to (8), in det
(
V q+1,...,q+m

1,...,m

)
we can factorize ε

q

1 in the first row, ε
q

2 in the second row and so on. The remaining matrix is a
Vandermonde matrix so that

det
(
V q+1,...,q+m

1,...,m

) =
m∏

l=1

εl
q

∏
1�i�j�m

(εj − εi).

In the same way, one shows that

det
(
V̄ q+1,...,q+m

1,...,m

) =
m∏

l=1

εl
q

∏
1�i�j�m

(εj − εi).

Finally, the unimodularity of εj s yields expression (28) that is different from zero whatever
q. In this way, the rank of (C) is equal to its principal rank and the necessity of condition (i)
is proved5. This result and property (c) of Toeplitz matrices (see appendix C) imply that the
first m rows or columns of (C) are linearly independent.

3.2. Necessity of condition (ii)

To prove the necessity of (ii), we must prove that the mth degree polynomial equation
Pm(z) = 0 with roots equal to ε1, . . . , εm, distinct and unimodular by assumption, coincides
with the resolvent equation defined by (5) and generated by the considered matrix (C). We
shall adopt the same notation of equations (15) and (16), with the obvious change N → m.
Then, am = 1 and, due to the unimodularity of εj s, |a0| = 1. In order to determine remaining
coefficients a0, . . . , am−1 of Pm(z), we observe that, from the condition Pm(εi) = 0, follows
that εm

i = −∑m−1
l=0 alε

l
i . After multiplying the latter by εi

j , with j ∈ Z, and setting q = m+j ,
one finds that

ε
q

i = −
m−1∑
l=0

alε
l+q−m

i , q ∈ Z and i = 1, . . . , m. (29)

The substitution of these relations in (22), where for simplicity we put c0 = cl,0, yields

cs−r = −
m∑

i=1

ρi

m−1∑
l=0

alε
l+s−r−m
i = −

m−1∑
l=0

alcs−r−(m−l). (30)

4 This is also evident from (24): by construction the rows of (V) span the range space of (C) and (C) has rank at
most equal to m.
5 For the case of Hermitian non-negative Toeplitz matrices considered by Grenander and Szegö, their proof shows
that the principal rank of these matrices is equal to their rank. An alternative proof was given by Goedkoop [16]
introducing a finite-dimensional Hilbert space (see also [2]). Thus, for this kind of matrices, one has the interesting
property that the rank is obtained by considering the strictly principal minors of increasing order till finding a singular
minor. If the latter’s order is m + 1 the rank of the matrix is m.
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Taking (s − r) = 1, 2, . . . , m, one obtains the following system of linear equations:

c0a0 +c1a1 +c2a2+ · · · +cm−1am−1 = −cm

c−1a0 +c0a1 +c1a2+ · · · +cm−2am−1 = −cm−1

. . . . · · · . .

c−m+1a0 +c−m+2a1 +c−m+3a2+ · · · +c0am−1 = −c1.

(31)

This uniquely determines coefficients a0, . . . , am−1 of the polynomial because the determinant
of the coefficients is different from zero (see the last remark in section 3.1). Actually, the
determinant coincides with Dm defined below equation (5). In this way we have shown that
Pm(z) = 0, the equation determined by εj s, coincides with Grenander and Szegö’s equation (5),
i.e. with the resolvent equation generated by matrix (C), no longer required to be non-negative
or non-positive definite. Since the roots of Pm(z) = 0 are distinct and unimodular, the
coefficients of this equation obey conditions (a) and (b) of lemma A. In this way, the necessity
of (ii) is proved.

To complete the discussion, we report the explicit expressions of coefficients al in terms
of the appropriate minors of (C). In fact, the solution of (31) is

al = (−)m−l det
(
C1,...,l,l+2,...,m+1

1,...,m

)/
Dm, l = 0, . . . , m (32)

Dm ≡ det
(
C 1,...,m

1,...,m

) �= 0, (33)

where in (32) we let l assume the value m since it yields the known relation am = 1.
Furthermore, using (C.4) (with n = m + 1, p = 1 and q = 2), from equation (32) with l = 0
one finds

a0 = (−)m det
(
C2,...,m+1

1,...,m

)/
Dm = (−)meiθ1 . (34)

Hence, a0 is unimodular as already evident from (16).

3.3. Sufficiency of (i) and (ii)

If the rank m of the considered matrix (C) coincides with its principal rank value, then
equation (5) yields the resolvent equation Pm(z) = 0. The coefficients of this equation are
given by (32)–(34). They obey conditions (21) as shown in appendix B. Hence, condition (a)
of lemma A is already fulfilled. From the previous coefficients one evaluates matrix (S) by
(17)–(20) (with N → m). If matrix (S) turns out to be non-negative and has rank m, then
Pm(z) = 0 has m distinct unimodular roots. After solving this equation, ρj s can be determined
by equations (6) and (7) since these also apply in the case of non-definite (C). Alternatively,
ρj s can be determined solving the system of m linear equations

m∑
j=1

εj
pρj = cp, p = 0, . . . , (m − 1) (35)

that follow from (22). (For notational simplicity, we still omit index l present in the definition
of c0.) These equations can also be written as

m∑
j=1

VT
p+1,j ρj = cp, p = 0, . . . , (m − 1) (36)
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where (VT ) is the transpose of the m × m upper left principal minor of matrix (8). The formal
solution of (36) is

ρj =
m−1∑
p=0

(VT )−1
j,p+1cp, j = 1, . . . , m, (37)

since (VT ) is certainly non-singular.
Finally, it must be proved that the numbers of ρj s that turn out to be positive or negative

are, respectively, equal to N+ and N− (again we omit index l). To this aim, consider the
Hermitian bilinear form

C2[u] ≡
n+1∑

r,s=1

urCr,sus, us ∈ C. (38)

This is immediately expressed by equation (24) in terms of the diagonal form

C2[u] =
m∑

p=1

vp[u]ρpvp[u] (39)

where

vp[u] ≡
n+1∑
s=1

Vp,sus, p = 1, . . . , m. (40)

At the same time, since (C) is Hermitian, it can be diagonalized by a unitary transformation
(U) and written as

(C) = (U)†(χ)(U) (41)

where

(χ)r,s = (χr − χ̂l)δr,s , r, s = 1, . . . , (n + 1) (42)

with χrs equal to the eigenvalues of (Ĉ). As discussed at the beginning of this section,
µl of (χr − χ̂l)s are equal to zero, Nl,+ are positive and Nl,− negative. Therefore, we can
first compact (U †) by eliminating µl columns whose index corresponds to the rows of (χ )
containing the zero eigenvalues and then we compact (χ ) eliminating the rows and the columns
containing the zero eigenvalues. Hereinafter (U) shall be an m × (n + 1) rectangular matrix
with orthonormal rows and (χ ) an m × m diagonal and non-singular matrix. We set

wp ≡
n+1∑
s=1

Up,sus, p = 1, . . . , m (43)

and consider wps as the arbitrary independent variables. Using (24) we can write

(U)†(χ)(U) = (C) = (V)†(Q)(V).

The row spaces of (U) and (V) necessarily coincide with the (U) and (V) right image
spaces that in turn coincide with the eigenspace of (C) associated with the eigenvalue zero.
There exists then a non-singular m × m matrix (R) such that (V) = (R)(U). Now, for any
complex m-tuple www = (w1, . . . , wm), we have www†(χ)www = www†(R)†(Q)(R)www which leads to
(χ) = (R)†(Q)(R). Thus, (χ ) and (Q) are related by a congruence, Sylvester’s inertia law
[17] applies and the number of positive (negative) ρps coincides with the number of positive
(negative) (χp − χ̂l)s. In this way, the sufficiency of (i) and (ii) is proved and the proof of the
generalized Carathéodory theorem is complete.

The corollary of this theorem is easily proved by the previous considerations.
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4. Conclusion

Summarizing, given n complex numbers c1, . . . , cn one considers the Hermitian Toeplitz
matrix (Ĉ) defined by (4). One evaluates its distinct eigenvalues, denoted by χ̂1 < · · · < χ̂ν

with mutiplicities µ1, . . . , µν . Setting (Cl) ≡ (Ĉ) − χ̂l(I ) with l = 1, . . . , ν, the resulting
matrices with l �= 1 and l �= ν are indefinite, while (C1) and (Cν), respectively, are non-negative
and non-positive definite. For each l ∈ {1, . . . , ν}, the complex numbers −χ̂l, c1, . . . , cn can
uniquely be written in the form (23) with ml given by (14) iff (i) the rank and the principal
rank of (Cl) are equal to ml and (ii) the (ml + 1) × (ml + 1) matrix (Sl), defined by (17)–(20),
is non-negative definite and has rank ml .

One concludes that we have µ different ways for writing the n complex numbers c1, . . . , cn

in the form (23), where µ denotes the number of (Cl) that obeys conditions (i) and (ii).
As a final remark we observe that, in theorems 2.2 and 3.4 of Ellis and Lay [8], the

assumption that the resolvent has unimodular roots can be removed, thanks to lemma A. It
can be substituted with the constructive requirements: (a) the coefficients of the resolvent
equation obey equation (21) if the given Toeplitz matrix (T ) is not Hermitian (oppositely, the
condition is already fulfilled as proved in appendix B), (b) if the discriminant of the resolvent
equation is equal to zero, one algebraically eliminates [12, 13] all the multiple roots from the
resolvent obtaining the lowest degree resolvent equation (i.e. the polynomial equation defined
by the distinct roots of the outset resolvent), (c) by the coefficients of the (new) resolvent
equation one constructs the relevant matrix (S) and one checks its positive definiteness. In
the only affirmative case generalized factorization (25) of (T ) is possible. This reduces to
Carathéodory’s generalized one if (T ) is Hermitian and the outset resolvent has no multiple
roots.

Appendix A. Proof of the lemma on the unimodular roots

We shall now prove lemma A reported in section 2.2. It states the necessary and sufficient
condition for all the zeros of a polynomial equation with complex coefficients to lie on the unit
circle. It is stressed that the known theorems ensuring such property lean upon the existence of
other polynomial with unimodular roots [9, 10], while lemma A only involves the coefficients
of (15), the given polynomial equation.

We first observe that condition (a) of lemma A amounts to state that condition (21) are
necessary and sufficient for the roots of (15) to obey εj = 1/εij for j = 1, . . . , N and
i1, . . . , iN equal to a permutation of {1, . . . , N}. This is proved in appendix B in the form of
lemma B. Since the reported conditions on εj s do neither ensure that the roots are distinct nor
that they are unimodular, we must show that remaining condition (b) of lemma A is necessary
and sufficient for the validity of the last two properties. To this aim, we start by observing that
the noticed properties of εj s allow us to extend definitions (17) to negative ps, so as to write

σp ≡
N∑

j=1

εj
p p = 0,±1,±2, . . . , (A.1)

and to convert definitions (19) into the equalities

σ−p = σp, p = 0,±1,±2, . . . . (A.2)

Furthermore, the last of relations (18) also holds true for negative p integers. In fact, the
complex conjugate of this relation by (21) becomes

a0(aN σp+N + · · · + a2 σp+2 + a1 σp+1 + a0 σp)

= a0σ−p−N + · · · + aN−2σ−p−2 + aN−1σ−p−1 + aNσ−p = 0, (A.3)
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and the statement is proved. The previous considerations show that all the matrix elements
σps of matrix (S), defined by (20), are known in terms of a0, . . . , aN .

We now prove the necessity of condition (b) of lemma A.
If Nεj s are unimodular and distinct, the N × (N + 1) matrix (V) defined by (8) exists.

The assumed properties of εj s ensure that (S) = (V†)(V), that det(S) = 0 and that the rank of
(V) is N. These three properties imply that (S) is a non-negative definite matrix of rank N and
the necessity of condition (b) of lemma A is proved. We can apply Carathéodory’s theorem to
(S) and conclude that σps can uniquely be written as

σp =
N∑

j=1

τjωj
p, p = 0,±1, . . . ,±N (A.4)

with ωj s unimodular, distinct and roots of the resolvent equation generated by matrix (S), i.e.,

QN(z) = 
N
−1 det




σ0 σ1 · · · σ
N−1 σ

N

σ−1 σ0 · · · σ
N−2 σ

N−1

. . . . . . . . . . . . . . . . . . . . . . . . .

1 z · · · zN−1 zN


 = 0, (A.5)

where 
N denotes the determinant of the N × N upper left principal minor of (S). The
comparison of (A.4) with (A.1) and the uniqueness of the Carathéodory decomposition imply
τ1 = · · · = τN = 1 and (ω1, . . . , ωn) = (ε1, . . . , εN). The last equality implies that
QN(z) = PN(z).

To prove the sufficiency of condition (b) we must show that the roots of PN(z) = 0 are
distinct and unimodular if (S) is a non-negative matrix and has rank N. In fact, from the last
property follows that 
N �= 0, and from definition (A.1) and property (A.2) that


N = det




N
∑N

j=1 εj

∑N
j=1 ε2

j · · · ∑N
j=1 εN−1

j

σ−1 σ0 σ1 · · · σ
N−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ−N+1 σ−N+2 σ−N+3 · · · σ0




=
N∑

j=1

det




1 εj εj
2 · · · εj

N−1

σ−1 σ0 σ1 · · · σ
N−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ−N+1 σ−N+2 σ−N+3 · · · σ0




=
∑

1�j1,...,jN �N

det




1 εj1 εj1
2 · · · εj1

N−1

εj2
−1 1 εj2 · · · εj2

N−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

εjN

−N+1 εjN

−N+2 εjN

−N+3 · · · 1


 . (A.6)

The last expression can also be written as

∑
1�j1,...,jN �N

1

ε0
j1
ε1
j2

· · · εjN
N−1

det




1 εj1 ε2
j1

· · · εj1
N−1

1 εj2 ε2
j2

· · · εj2
N−1

. . . . . . . . . . . . . . . . . . . . . . . . .

1 εjN
ε2
jN

· · · εjN

N−1


 . (A.7)

Within the sum the only terms with j1 �= j2 �= · · · �= jN differ from zero. In other words, the
possible values of {j1, . . . , jN } correspond to the possible permutations of {1, . . . , N}. The
values of the corresponding determinants are (−)P

∏
1�i<j�N(εj − εi) where P is the number
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of the transpositions required for passing from {j1, . . . , jN } to {1, . . . , N}. One concludes that


N =
∏

1�i<j�N

(εj − εi)(1/εj − 1/εi). (A.8)

Thus, 
N �= 0 ensures that the roots of PN(z) = 0 are distinct. We show now that the
resolvent of (S), i.e. equation (A.5), coincides with PN(z). In fact, QN(z) can be written as
QN(z) ≡ ∑N

p=0 qpzp = 0 with

qp ≡ (−1)N+p


N

det




σ0 · · · σ
p−1 σ

p+1 · · · σ
N−1 σ

N

σ−1 · · · σ
p−2 σ

p
· · · σ

N−2 σ
N−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ−N+1 · · · σ−N+p
σ−N+p+2 · · · σ0 σ1


. (A.9)

Manipulations similar to those performed in equations (A.6), (A.7) convert the determinant
present in (A.9) into

∑
1�j1,...,jN �N

1

ε0
j1
ε1
j2

· · · εjN
N−1

det




1 · · · εj1
p−1 εj1

p+1 · · · εj1
N−1 εj1

N

1 · · · εj2
p−1 εj2

p+1 · · · εj2
N−1 εj2

N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 · · · εjN

p−1 εjN

p+1 · · · εjN

N−1 εjN

N


 .

Using the property that εj
N = −∑N−1

p=0 apεj
p, the above expression becomes

∑
1�j1,...,jN �N

−ap

ε0
j1
ε1
j2

· · · εjN
N−1

det




1 · · · εj1
p−1 εj1

p+1 · · · εj1
N−1 εj1

p

1 · · · εj2
p−1 εj2

p+1 · · · εj2
N−1 εj2

p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 · · · εjN

p−1 εjN

p+1 · · · εjN

N−1 εjN

p


 ,

and from (A.7) and (A.9) one concludes that qp = ap, p = 0, . . . , N . In this way, the
resolvent of (S) coincides with PN(z). Consequently, εj s are also unimodular because the
assumed non-negativeness of (S) and Carathéodory’s theorem ensure that the unimodularity
is true for the roots of resolvent QN(z).

In this way lemma A is fully proved.
From the lemma follows, for instance, that the quadratic and cubic equations have distinct

unimodular roots iff their coefficients are as follows:

N = 2 : a1 = ±ρeiφ/2, a0 = eiφ with 0 � ρ < 2 and φ ∈ [0, 2π)

N = 3 : a2 = ρei(φ−ψ), a1 = ρeiψ, a0 = eiφ with

either 0 � ρ � 1, φ, ψ ∈ [0, 2π)

or 1 � ρ < 3, φ ∈ [0, 2π), (2φ − �(ρ)) < 3ψ < (2φ + �(ρ))

where �(ρ) ≡ arccos[(ρ4 + 18ρ2 − 27)/8ρ3].
An example of Hermitian Toeplitz matrix whose resolvent does not obey the conditions

required by the lemma because the rank of (S) is smaller than N was given at the end of
section 2.3.

We remark that lemma A could more generally be formulated as follows6:

Lemma A’. A polynomial equation of degree N has unimodular roots iff (a) its coefficients
obey conditions (21) and (b) Toeplitz matrix (S), defined by (20), is non-negative definite. The
number of the distinct roots is equal to M, the rank of (S).

This lemma is essentially proved as lemma A.

6 We thank Dr Alessandro De Paris for having brought this point to our attention.
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Appendix B. Properties of the resolvent coefficients

For completeness, we first report the proof of a well-known [9] lemma stating the conditions
for a polynomial to be self-reciprocal. The lemma says

Lemma B. The coefficients al of a polynomial equation of degree N obey

an = aN−n/a0, n = 0, . . . , N, with a0 �= 0, (B.1)

iff the roots of the equation are such that εj = 1/εij for j = 1, . . . , N and i1, . . . , iN equal to
a permutation of {1, . . . , N}.

To prove the necessity one starts from expression (16) of ans. The assumed property of
the roots implies that a0 �= 0. Moreover, taking the complex conjugate of an one finds

an = (−)N−n
∑

1�j1<···<jN−n�N

εj1 · · · εjN−n

= (−)N−n
∑

1�j1<···<jN−n�N

1

εij1
· · · εijN−n

= (−)N−n

ε1 · · · εN

∑
1�i1<···<iN−n�N

ε1 · · · εN

εi1 · · · εiN−n

= (−)N−n∏N
j=1 εj

∑
1�i1<···<in�N

εi1 · · · εin = aN−n

a0
.

To prove the sufficiency one observes that

PN(z) =
N∏

j=1

(z − εj ) =
N∑

j=1

aj z
j =

N∑
j=1

am−j

a0
zj

= zN

a0

N∑
t=0

at

zt
= zN

a0

N∏
j=1

(
1

z
− εj

)
. (B.2)

The previous manipulations require that no root is equal to zero and this is ensured by the
condition a0 �= 0. With z = εj , whatever j in {1, . . . , m}, the first product in (B.2) vanishes.
For the last to vanish it must result 1/εj = εij and the property of the roots is recovered.

In passing it is noted that lemma B is true also when some roots have multiplicity greater
than one.

We prove now the property mentioned at the beginning of section 3.3, namely:

Property B. The coefficients of the resolvent equation, defined by equations (32)–(34), obey
conditions (21).

In fact, the unimodularity of a0 is evident from (34). Since a0 �= 0, after substituting (32)
into (21) one finds

det
(
C1,...,l,l+2,...,m+1

1,...,m

)
det

(
C2,...,m+1

1,...,m

) = det
(
C1,...,m−l,m−l+2,...,m+1

1,...,m

)
det

(
C 1,...,m

1,...,m

)
, l = 0, . . . , m. (B.3)

Taking n = (m + 1), (j1, . . . , jm) = (1, . . . , m − l, m − l + 2, . . . , m + 1) and (i1, . . . , im) =
(1, . . . , m) in (C.3), one finds that

det
(
C1,...,m−l,m−l+2,...,m+1

1,...,m

) = det
(
C1,...,l,l+2,...,m+1

2,...,m+1

)
. (B.4)
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The rhs of (B.3) can be written as

det
(
C1,...,l,l+2,...,m+1

2,...,m+1

)
det

(
C 2,...,m+1

2,...,m+1

)
(B.5)

by (B.4) and the property that all the m × m strictly principal minors of (C) coincide. From
(C.7) follows that

det
(
C 2,...,m+1

2,...,m+1

) = det
(
λ 1,...,m

2,...,m+1

)
det

(
C2,...,m+1

1,...,m

)
,

and

det
(
C1,...,l,l+2,...,m+1

2,...,m+1

) = det
(
λ 1,...,m

2,...,m+1

)
det

(
C1,...,l,l+2,...,m+1

1,...,m

)
.

The substitution of the above two relations into (B.5) yields∣∣det
(
λ 1,...,m

2,...,m+1

)∣∣2
det

(
C1,...,l,l+2,...,m+1

1,...,m

)
det

(
C2,...,m+1

1,...,m

)
,

that identically coincides with the left-hand side of (B.3) due to (C.8).

Appendix C. Some properties of Hermitian Toeplitz matrices

We list here a series of properties obeyed by a square Hermitian Toeplitz matrix (C) of order
n and partly reported in [9].

(1) Its elements obey to

Cr,s = Cs,r = cr−s = cs−r , r, s = 1, . . . , n, (C.1)

so that all the elements of (C) contained in a line parallel to the main diagonal are equal.
(2) One has the reflection symmetry with respect to the second diagonal formalized by the

condition

Cr,s = Cn+1−s,n+1−r . (C.2)

(3) All the (m × m) strictly principal minors of (C), whatever the considered rows (and
columns), are identical.
‘The property is a consequence of (1).’

(4) For any choice of m rows (1 � i1 < · · · < im � n) and m columns (1 � j1 < · · · <

jm � n) it results

det
(
C j1 ,...,jm

i1,...,im

) = det
(
CT (n+1−jm),...,(n+1−j1)

(n+1−im),...,(n+1−i1)

) = det
(
C (n+1−jm),...,(n+1−j1)

(n+1−im),...,(n+1−i1)

)
. (C.3)

‘The first equality, where (CT ) denotes the transposed of (C), follows from property (2)
and the second from the Hermiticity of (C).’

The following properties, that we think to be original, hold only true for Hermitian
Toeplitz matrices having their rank equal to the principal one.

(5) If the principal rank of a Hermitian Toeplitz matrix (C) is equal to the rank m (� n) of
(C), any (m × m) strictly principal minor of (C) is non-singular.

‘The property immediately follows from the definition of ‘principal rank’ of a matrix,
reported in section 2.2 below statement (i), and (3)’.
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(6) For any (n × n) Hermitian Toeplitz matrix of rank equal to its principal rank m (� n),
the determinant of any of its minors formed by m subsequent rows and m subsequent
columns is simply related by a phase factor to the determinant of the (strictly) principal
minor contained in the considered rows or columns, i.e.,

det
(
C q+1,...,q+m

p+1,...,p+m

) = eiθp−q det
(
C p+1,...,p+m

p+1,...,p+m

)
,

det
(
C q+1,...,q+m

p+1,...,p+m

) = eiθp−q det
(
C q+1,...,q+m

q+1,...,q+m

)
, (C.4)

θ
p−q

∈ R, p, q = 0, 1, . . . , n − m.

‘Clearly, if the first of the above two equalities is true the second is also true because of
(3). To prove the first of equalities (C.4) one observes that (4) implies that any m distinct
rows of (C) can be written as linear combinations of m other distinct rows (see, e.g.,
[12], chapter III). Hence, rows (p + 1), . . . , (p + m) can be expressed in terms of rows
(q + 1), . . . , (q + m) as

Cr,s =
q+m∑

t=q+1

λr,tCt,s , r = (p + 1), . . . , (p + m), s = 1, . . . , n, (C.5)

where λr,ts are suitable numerical coefficients. From these relations follows that

det
(
C p+1,...,p+m

p+1,...,p+m

) = det
(
λ q+1,...,q+m

p+1,...,p+m

)
det

(
C p+1,...,p+m

q+1,...,q+m

)
. (C.6)

Due to (e) the left-hand side of (C.6) is different from zero so that both factors on the rhs
are different from zero. The complex conjugation of (C.6), by the Hermiticity of (C),
yields

det
(
C p+1,...,p+m

p+1,...,p+m

) = det
(
λ q+1,...,q+m

p+1,...,p+m

)
det

(
C q+1,...,q+m

p+1,...,p+m

)
. (C.7)

From equation (C.5) also follows that

det
(
C q+1,...,q+m

p+1,...,p+m

) = det
(
λ q+1,...,q+m

p+1,...,p+m

)
det

(
C q+1,...,q+m

q+1,...,q+m

)
= det

(
λ q+1,...,q+m

p+1,...,p+m

)
det

(
C p+1,...,p+m

p+1,...,p+m

)
,

where the last equality follows from (3). The substitution of the last equality into
equation (C.6) and the fact that, by assumption, det

(
C p+1,...,p+m

p+1,...,p+m

) �= 0 imply that

∣∣ det
(
λ q+1,...,q+m

p+1,...,p+m

)∣∣2 = 1 p, q = 0, . . . , n − m, (C.8)

and equation (C.4) is proved. That the phase factor depends on p − q instead of (p, q)

follows from the fact that the two determinants present in (C.4) do not change with the
two substitutions p → p + 1 and q → q + 1 owing to (C.1).’ An immediate consequence
of (6) is the property that

(7) Any (m × m) minor formed by m subsequent rows and m subsequent columns of a
Hermitian Toeplitz matrix with rank equal to its principal rank m is non-singular.
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